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kullanilmasini1 zorunlu kilmaktadir. Geleneksel deterministik yontemler,
ozellikle dogrusal olmayan, ¢ok amagli ve kisithi problemlerde kiiresel
optimuma ulagsmada yetersiz kalabilmektedir. Bu baglamda, son yillarda
meta-sezgisel  (metaheuristic) algoritmalar, OGA problemlerinin
¢Oziimiinde giiglii alternatifler olarak 6ne ¢ikmistir. Bu ¢aligmada, elektrik
giic sistemlerinde OGA problemlerine yonelik olarak gelistirilen baslica
meta-sezgisel yontemler kapsamli bir sekilde incelenmistir. Genetik
algoritma (GA), pargacik siirii optimizasyonu (PSO), yapay art kolonisi
(ABC), Ogretme-Ogrenme tabanli optimizasyon (OOTO), farkli evrim
(FE), Jaya ve hibrit algoritmalar gibi yaklagimlar, performans kriterleri,
avantajlari, sinirliliklart ve uygulama alanlari agisindan degerlendirilmistir.
Ayrica bu yontemlerin karsilastirmali analizleriyle sagladigi iyilestirme
diizeyleri de detayli bigcimde ele alinmistir. Ayrica, ¢ok amaglh
optimizasyon, yenilenebilir enerji entegrasyonu ve belirsizlik altinda OGA
gibi giincel arastirma egilimlerine de yer verilmistir Bu derleme
arastirmasi, meta-sezgisel tabanli ¢6ziim yOntemlerinin gii¢ sistemleri
alanindaki potansiyelini ortaya koymakta ve gelecekteki ¢alismalar igin yol
gosterici olmay1 amaglamaktadir.
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The increasing complexity of today's electric power systems and the
requirements for optimal operation and planning necessitate the use of more
efficient and flexible approaches to solve optimal power flow (OPF)
problems. Traditional deterministic methods may be insufficient to reach
the global optimum, especially for nonlinear, multi-objective and
constrained problems. In this context, in recent years, metaheuristic
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optimization, artificial algorithms have emerged as powerful alternatives for solving OGA
intelligence. problems. In this study, the main meta-heuristic methods developed for
OGA problems in electric power systems are comprehensively reviewed.
Approaches such as genetic algorithm (GA), particle swarm optimization
(PSO), artificial bee colony (ABC), Teaching-Learning based optimization
(TLBA), differential evolution (FE), Jaya and hybrid algorithms are
evaluated in terms of their performance criteria, advantages, limitations and
application areas. In addition, the comparative analysis of these methods
and the level of improvement they provide are also discussed in detail.
Current research trends such as multi-objective optimization, renewable
energy integration and OGA under uncertainty are also included. This
review research demonstrates the potential of meta-heuristic-based solution
methods in the power systems domain and aims to provide guidance for
future work.

1. GIRiS

Elektrik gii¢ sistemlerinin giivenli, ekonomik ve siirdiiriilebilir bir sekilde isletilmesi, modern enerji ydnetiminin
temel hedeflerinden biridir (Dommel & Tinney, 1968). Bu hedeflere ulagabilmek i¢in sistemdeki {iretim
birimlerinin uygun sekilde koordinasyonu, gerilim diizeylerinin sinirlar iginde tutulmasi ve enerji kayiplarinin en
aza indirilmesi gerekmektedir. Bu baglamda, Optimal Gii¢ Akisi (OGA) problemi, sistemin belirli kisitlar altinda
isletme kosullarin1 optimize etmeyi amaglayan kritik bir miihendislik problemidir (Sulaiman ve ark., 2021).

OGA problemleri genellikle dogrusal olmayan, ¢ok degiskenli ve ¢ok kisitli yapilari nedeniyle ¢6ziim agisindan
olduk¢a karmasiktir. Geleneksel ¢oziim yontemleri (Newton-Raphson, Lagrange carpanlari, dogrusal
programlama vb.), bazi 6zel durumlar disinda yerel ¢oziimlere takilabilmekte veya yiiksek boyutlu problemlerde
yetersiz kalabilmektedir (Abou El Ela, Abido, & Spea, 2010; Gao ve ark.,2017). Ayrica, bu yontemlerin tiirev
bilgisi gerektirmesi, sistemde belirsizliklerin artmasi ve yenilenebilir enerji kaynaklarinin entegrasyonu gibi
giiniimiiz gii¢ sistemlerindeki yeni dinamikler karsisinda etkinligini sinirlamaktadir (Zamzam & Baker, 2020).

Bu sorunlarin asilmasi amaciyla son yillarda meta-sezgisel algoritmalar, OGA ¢o6ziimlerinde yaygin olarak
kullanilmaya baslanmigtir. Meta-sezgisel yontemler; rastgelelik, popiilasyon temelli arama ve dogadaki cesitli
mekanizmalardan esinlenen yapilarina dayanarak, karmasik optimizasyon problemlerinde kiiresel ¢éziime yakin
sonuglar elde etme potansiyeline sahiptir (Devarapalli, Bhattacharyya, & Sinha, 2020). Genetik algoritma (GA),
pargacik siirii optimizasyonu (PSO), yapay ar1 kolonisi (ABC), farkli evrim (DE), Jaya, 6gretmen-6grenci temelli
algoritmalar (TLBO) ve cesitli hibrit yaklagimlar, literatiirde siklikla OGA ¢6ziimiinde uygulanmis ve basarili
sonuclar vermistir.

Bu derleme ¢alismasinin amaci, OGA problemlerinde kullanilan baslica meta-sezgisel yontemleri sistematik bir
sekilde incelemek, yontemlerin giiclii ve zayif yonlerini degerlendirmek ve gelecekteki arastirmalara 151k tutacak
kapsamli bir bakis acis1 sunmaktir. Calisma kapsaminda hem tek amagli hem de ¢ok amagli OGA problemleri ele
alinmis, ayrica yenilenebilir enerji entegrasyonu, belirsizlik modellemeleri ve dinamik yiik degisimleri gibi giincel
uygulama alanlarina da deginilmistir.

2. OGA PROBLEMi FORMULASYONU

Optimal Gilig Akist (OGA) problemi, elektrik enerji sistemlerinin gilivenli, ekonomik ve verimli sekilde
isletilmesini amaclayan 6nemli bir optimizasyon problemidir (Cain, O’neill, & Castillo, 2012). OGA, sistemin
fiziksel ve operasyonel kisitlarini dikkate alarak belirli bir amag fonksiyonunu (6rnegin iiretim maliyeti, gii¢c kaybi
veya emisyon miktar1) optimize etmeyi hedefler. Bu baglamda OGA problemi, hem siirekli hem de ayrik karar
degiskenleri igeren dogrusal olmayan kisith bir optimizasyon problemi olarak formiile edilir (Niu, Wan, & Xu,
2014).

2.1.Ama¢ Fonksiyonu

OGA probleminin temel amaci, agagida 6rneklenen kriterlerden biri veya birkaginin optimize edilmesidir:
. Toplam tiretim maliyetinin minimizasyonu
. Aktif gii¢ kayiplarinin minimizasyonu
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. Cevresel emisyonlarin minimizasyonu

. Gerilim profilinin iyilestirilmesi
Genel bir amag fonksiyonu asagidaki gibi ifade edilebilir:

Minimize : f(x,u) (D

Burada, f(x,u), se¢ilen optimizasyon hedefini temsil eden amag fonksiyonu, x, durum degiskenleri (6rnegin gerilim
biiyiikliikleri ve agilari, reaktif giicler), u, kontrol degiskenleri (6rnegin jenerator ¢ikislari, gerilim seviyeleri,
transformator kademe oranlari)

2.1.1 Durum degiskenleri
Gii¢ sisteminde belirli siirlar altinda mevcut durumu hakkinda bilgi vermek icin optimize edilen degerlerdir.
Durum degigkeni x olarak tanimlanmis ve Es. 2 ile belirtilmistir.

X = [Pcl, VL1 "'VLNL' ch "'QGNG' Sll '"Slnl] (2)

Burada, P_G1 segilen slack bara, Q G generatorlerin reaktif giic degeri, V_L yiik baralarinin gerilim degeri, and
S_liletim hattinin yiikii olarak tanimlanmustir.

2.1.2. Kontrol degiskenleri

Gii¢ sisteminde amag fonksiyonuna uygun olarak optimize edilmesi i¢in degiskenlere sahip karar degerleridir.
Durum degiskeni u olarak tanimlanmis ve Es. 3 ile belirtilmistir.

uT = [[’G2 e PGNG’ VGl . VGNG' QCl e QCNC' T1 e TNT] (3)
Burada, taransformatdr tap ayarlar T, paralel reaktif giic kompanzatorleri Q_C olarak tanimlanmustir.
2.1.3 Kisitlamalar

OGA c¢alismalarinda, gili¢ sisteminin giivenli ve verimli caligmasi i¢in bazi kisitlamalarin belirlenmesi
gerekmektedir. bu kisitlamalari esitlik ve esitsizlik kisitlamalari olarak siniflandirilmaktadir. Kisitlamalar sistemin
¢aligma sinirlarini belirler.

Esitlik kisitlamalari: burada amag sistemdeki gii¢ iretimi, tiiketimi ve kayiplar arasinda olusturulan dengeyi
belirleyen kisitlamalardir. Gii¢ sistemlerinde aktif ve reaktif gii¢ kisitlamalar1 Es. 4ve 5’de verilmistir.

Pgi = Ppi — Vi 332, V[Gyjcos(8; — 8;) + Byjsin(§; — 6)] = 0,

“
Qci — Qpi — Vi XY2, Vj[Gyjsin(8; — 6;) + Bjcos(6; — 6,)] = 0 ()
Burada, P;;, i. baradaki jeneratorlerin irettigi aktif gilic. Pp;, i. baradaki aktif gii¢ talebi. Qg;, i. baradaki
jeneratorlerin tirettigi reaktif glic. Qp;, i. baradaki reaktif giic talebidir. G;; ve B;; i. ve j. baralar arasindaki iletim
hattinin iletkenlik ve susceptance degerleridir.
Esitsizlik kisitlamalari: burada generatorlerin, baralarin, trafolarin giic gerilim gibi degerlerinin belirli sinirlar
icinde kalmasi belirlenir.

PE™ < Py S PG, 1<i<Ng ©
G < Qe S QB , 1<i<Ng s
VETm SV SV, 1<i<Ng ®)
o< Qe < QB , 1S i< N ©)
T <T; <T"™ , 1<i<Ng (10)
Vn <V, SV, 1<i<N, an
Sy <SP, 1<i<N, 12)

3. KLASIK OGA COZUM YONTEMLERI
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Optimal Gii¢ Akisi (OGA) problemi, karmasik, dogrusal olmayan ve kisitli bir optimizasyon problemidir. Bu
problemin ¢éziimii i¢in uzun yillardir gelistirilen klasik (deterministik) ¢oziim yontemleri, 6zellikle sistemin
kararliligin1 ve giivenilirligini saglamak amaciyla yaygin olarak kullanilmaktadir. Klasik yontemler, genellikle
tiirev bilgisi gerektiren matematiksel tekniklere dayali olup, hizli yakinsama &zelliklerine sahiptir. Ancak, yerel
optimuma saplanma egilimleri ve ¢ok amacli hedeflere sinirli uyumluluklari nedeniyle bazi kisitlamalar1 da
beraberinde getirirler.

Klasik OGA ¢oziim yontemleri genel olarak agagidaki bagliklar altinda siniflandirilabilir:
3.1. Newton-Raphson Tabanh Yéntemler

Newton-Raphson (NR) yontemi, giic sistemleri analizinde siklikla kullanilan hizli yakinsayan bir niimerik
yontemdir. OGA’ye uyarlanmis haliyle bu yontem, Lagrange c¢arpanlar ile amag¢ fonksiyonunu ve kisitlari
birlestirerek ¢6ziim tiretir Gretir (Sun ve ark., 1984). Denklem sistemi su sekilde olusturulur:

L(x, D) = f(x) + A" g(x) (13)

Burada f(x) amag fonksiyonunu, g(x) ise gii¢ akis denkliklerini temsil eder. NR tabanli yontemlerde dogrusal
olmayan denklem sistemi Jacobian matrisi yardimiyla ¢oziiliir. Bu yontem o6zellikle kiigiik ve orta olgekli
sistemlerde yiiksek dogruluk saglar, ancak baslangi¢ noktasina duyarlidir.

3.2. Dogrusal Programlama (LP)

Dogrusal programlama, hem amag fonksiyonunun hem de kisitlarin dogrusal oldugu problemlerde kullanilir. OGA
problemleri genellikle dogrusal olmadigindan, LP ancak bazi varsayimlar altinda (8rnegin sabit gerilim
biiyiikliikleri, dogrusal kayiplar) yaklasik ¢oziimler sunabilir (Stott & Marinho, 1979). Hizli ve kararli ¢aligmasina
ragmen, gercek¢i OGA problemleri i¢in sinirlt bir uygulama alanina sahiptir (Capitanescu, 2016).

3.3. Dogrusal Olmayan Programlama (NLP)
Dogrusal olmayan programlama, hem amag fonksiyonunun hem de kisitlarin dogrusal olmayan fonksiyonlarla
ifade edildigi durumlar: kapsar (Frank, Steponavice, & Rebennack, 2012). Lagrange ¢arpanlart veya Karush-

Kuhn-Tucker (KKT) kosullart kullanilarak ¢éziim elde edilir. NLP yontemleri, problem boyutuna gore etkili
sonuglar iiretebilir ancak ¢dziim siiresi uzayabilir ve yerel minimuma saplanma riski vardir (Wei, ve ark. 1998).

3.4. Artirllmis Lagrange Yontemi (Augmented Lagrangian Method)

Bu yontem, klasik Lagrange yaklagiminin bir uzantisi olup, ceza terimleriyle gii¢ akis denkliklerini daha etkili
sekilde uygular. Amag fonksiyonuna eklenen ceza terimleri sayesinde kisitlarin ihlal edilmesi engellenir:

La(x,24,0) = f(0) +47() + 2 llg@)II? (14)
Burada p, ceza katsayisidir. Bu yontem, kisitlarin daha hassas kontroliinii saglar.

3.5. i¢ Nokta Yontemleri (Interior Point Methods)

I¢ nokta yontemleri, biiyiik dlgekli optimizasyon problemlerinde etkili performans sergileyen modern klasik
yontemlerdendir (Yan & Quintana, 1999). Kisitli optimizasyon problemlerinde bariyer fonksiyonlar1 kullanarak
¢dziim uzayinda i¢ noktalardan ilerlenmesini saglar. Ozellikle yiiksek boyutlu OGA problemlerinde tercih
edilmektedir (Momoh & Zhu, 1999).

I¢ nokta yoéntemiyle amag fonksiyonu genellikle su sekilde formiile edilir:

Min f(x) = uX;In(s;) (15)

Burada p, bariyer parametresi; s;, esitsizlik kisitlarina iligkin bosluk degiskenleridir. Hem ¢6ziim hassasiyeti hem
de algoritmik verimlilik agisindan ileri diizey avantajlar sunar.
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3.6. Kuadratik Programlama (QP)

Amag fonksiyonunun kuadratik, kisitlarin ise dogrusal oldugu durumlarda kuadratik programlama kullanilabilir.
Ozellikle ikinci dereceden iiretim maliyet fonksiyonlarmin optimize edilmesinde etkilidir. Ancak, gii¢ akis
denkliklerinin dogrusal hale getirilmesi gerektiginden, ¢oziim hassasiyeti bazi durumlarda azalabilir (Reid &

Hasdorff, 2007).

Tablo 1. Klasik Yontemlerin Avantaj ve Dezavantajlari

Ozellik Avantaj Dezavantaj

Newton-Raphson Hizli yakinsama Baslangi¢ noktasina duyarlilik
LP Hizl ve kararli Gergekgilikten uzaklagabilir
NLP Dogrusal olmayan sistemlerde etkili Yerel minimuma saplanabilir

I¢c Nokta Biiyiik sistemlerde giiclii performans Karmasik algoritma yapist

QP Maliyet fonksiyonlarinda uygundur Kisit dogrusal varsayimi gerekir

Sonug olarak, klasik ¢oziim yontemleri, OGA probleminin deterministik yapisini temel alarak yiiksek ¢6ziim
dogrulugu ve hizli hesaplama avantajlari sunmaktadir. Ancak, bu yontemlerin karmasik, ¢ok amagli ve ¢cok modlu
yaptya sahip modern enerji sistemlerinde bazi sinirlamalar1 bulunmaktadir. Tablo 1’de klasik yontemlerin avantaj
ve dezavantajlar1 tablo halinde gosterilmistir. Bu nedenle son yillarda klasik yontemler, evrimsel algoritmalar ve
yapay zeka tabanli yaklagimlarla tamamlanarak daha esnek OGA ¢6ziimleri elde edilmektedir.

4. META-SEZGISEL YONTEMLERIN SINIFLANDIRILMASI
Meta-sezgisel algoritmalar, genel olarak dogadan ilham alan ve deterministik olmayan arama mekanizmalar1
kullanan sezgisel yaklasimlar olarak tanimlanabilir. OGA problemi baglaminda kullanilan baglica meta-sezgisel

yontemler asagidaki bagliklar altinda siniflandirilabilir:

4.1 Evrimsel Algoritmalar

. Genetik Algoritma (GA): Evrim teorisine dayali, kromozom temelli arama yontemidir. Caprazlama
ve mutasyon operatorleri ile ¢dziim uzayinda dolasir.
. Farkh Evrim (DE): Vektor tabanli mutasyon ve yeniden kombinasyon siiregleri ile ¢oziimleri

gelistirir. Siirekli degerli problemler i¢in uygundur.

4.2 Siirii Zekas1 Tabanh Yontemler

. Parcacik Siirii Optimizasyonu (PSO): Kus ve balik siiriilerinin hareketinden ilham alan, ¢6ziim
adaylarin1 hiz ve konum vektorleri ile giincelleyen bir yontemdir.
. Yapay Ari Kolonisi (ABC): Arilarin nektar arama davranisina dayanir. Calisan, gdzlemci ve kesifei

ar1 fazlari ile ¢oziim gelistirilir.

4.3 Fiziksel ve Sosyal Davranis Tabanh Yontemler

. Cekimsel Arama Algoritmasi1 (GSA): Kiitle ¢ekimi yasasina dayanarak ajanlar arasi etkilesimle
¢OzUm aranir.

. Jaya Algoritmasi: En iyi ¢ozlime yaklagsma ve en kotii ¢oziimden uzaklasma prensibine dayali sade
bir algoritmadir.

. Ogretme-Ogrenme Temelli Optimizasyon (TLBO): Bir 6gretmen ve ogrenciler arasinda bilgi

transferi modeliyle calisir. Parametre ayar1 gerektirmemesi avantaj saglar.

4.4 Hibrit ve Uyarlanabilir Yontemler

. GA-PSO, DE-ABC, TLBO-Jaya gibi hibrit yontemler, birden fazla algoritmanin giiclii yonlerini
birlestirerek daha dengeli bir arama siireci sunmay1 hedefler.

. Uyarlanabilir algoritmalar ise parametrelerini probleme gore otomatik olarak ayarlayarak esneklik
kazandirir.
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5. COK AMACLI OPTIMIZASYON VE PARETO YAKLASIMI

Giig sistemlerinde optimal gii¢ akisi (OGA) problemleri genellikle tek bir hedefle sinirli degildir. Minimum iiretim
maliyeti, minimum gii¢ kaybi, voltaj kararlilig1, ¢evresel emisyonlar ve giivenilirlik gibi birgok kriter ayni anda
optimize edilmek istenir. Bu nedenle ¢ok amacgh optimizasyon (Multi-Objective Optimization - MOO)
yaklasimlari, OGA problemlerinin ¢6ziimiinde daha gergekgi ve etkili bir alternatif sunar.

Meta-sezgisel algoritmalarin ¢ok amagli versiyonlari, Pareto optimalite prensibini esas alarak birden fazla hedef
fonksiyon arasinda denge kurmay1 amaclar. Bir ¢6ziimiin Pareto optimal olmast, bagka bir ¢dzlimiin tiim hedeflerde
daha iyi olamayacagi anlamina gelir. Bu yaklasimla elde edilen Pareto 6n cepheleri (Pareto fronts), karar vericilere
farkli tercihleri degerlendirme olanag: saglar.

Literatiirde en ¢ok kullanilan ¢cok amacli meta-sezgisel yontemler arasinda NSGA-II (Non-dominated Sorting
Genetic Algorithm II), MOPSO (Multi-Objective Particle Swarm Optimization), MOABC, MODE, MOJaya ve
MO-TLBO yer almaktadir. Bu yontemler ile yakit maliyeti vs. kayiplar, emisyon vs. gerilim sapmasi gibi farkli
hedef g¢iftleri dengeli sekilde optimize edilmistir. Pareto tabanli analizler, sistem planlamacilari i¢in ¢ok kiymetli
karar destek araglart sunmaktadir.

6. META-SEZGISEL YONTEMLERIN GUC SISTEMLERINE UYGULANMASINDAKI
ZORLUKLAR

Meta-sezgisel yontemlerin OGA ¢dziimlerinde sundugu avantajlara ragmen, uygulamada cesitli zorluklar da
mevcuttur:

. Kiiresel optimum garantisi yoktur: Meta-sezgisel yontemler, kiiresel optimuma yakin ¢oziimler
iiretebilse de, ¢oziimiin gergekten kiiresel optimum olup olmadig1 garanti edilemez.

. Parametre hassasiyeti: Birgok algoritma, uygun parametre ayari yapilmadiginda diisiik performans
gosterebilir. Bu durum kullanict deneyimine baglidir.

. Yavas yakinsama ve hesap yiikii: Ozellikle biiyiik 6lgekli sistemlerde, ¢dziimiin hesaplama siiresi
artabilir. Yiiksek islem giicii gereksinimi s6z konusu olabilir.

. Kisitlarin ele alinmasi: Karmasik kisit setlerinin (voltaj, reaktif giic, hat kapasiteleri vb.)
algoritmalara entegrasyonu bazen zordur.

. Gercek zamanh uygulama kisitlari: Meta-sezgisel algoritmalarin dogast geregi iteratif yapilari,

bazi ger¢ek zamanli uygulamalarda kullanimini sinirlayabilir.
7. GELECEK CALISMALAR iCiN ONERILER

Meta-sezgisel yontemlerin gii¢ sistemlerinde daha etkin kullanilabilmesi ve mevcut sinirlamalarin agilmasi igin
asagidaki oneriler dikkate alinabilir:

+ Uyarlanabilir ve parametresiz algoritmalar: Kullanici miidahalesini azaltan, algoritma i¢i 6grenmeye
dayali yapilar gelistirilebilir (6rnegin Jaya, TLBO gibi).

*  Hibrit yaklasimlar: Birden fazla algoritmanin giiclii yonlerini birlestiren yapilarla ¢6ziim kalitesi ve
yakinsama siiresi iyilestirilebilir.

*  Veri temelli yontemlerle biitiinlesme: Yapay sinir aglari, derin d6grenme ve makine Ogrenmesi
teknikleriyle algoritmalar desteklenerek daha akilli optimizasyon yapilari gelistirilebilir.

+  Gercek zamanh ve dagitik ¢oziimler: Ozellikle mikro sebekeler ve akilli sebekelerde kullamlabilecek,
dagitik ve hizli ¢alisan versiyonlar tasarlanabilir.

*  Enerji doniisiim teknolojileri ile entegrasyon: Yenilenebilir enerji, enerji depolama, elektrikli araglar
gibi yeni sistem unsurlarinin dahil edildigi OGA modelleriyle ¢alismalar genisletilmelidir.

*  Benchmark test sistemleriyle karsilastirmah analiz: IEEE 14, 30, 57, 118 gibi yaygin test
sistemlerinde standartlagtirilmig karsilastirmalar yapilmasi onerilir.

Tablo 2’de yillar i¢cinde OGA problemlerinin ¢oziimiinde kullanilan meta-sezgisel algoritmalar secgilen test
sistemlerine gore incelenmis, amag¢ fonksiyonlari, tekli veya ¢oklu amag¢ fonksiyonlarma gore siralanmustir.
Incelenen caligmalarda test sistemi olarak IEEE 30 barali test sistemi yaygin olarak kullanilmigtir. Hemen hemen
tim c¢aligmalarda maliyet amag fonksiyonu optimize edilmistir. Klasik GA, PSO gibi yontemlerden biyolojik ve
sosyal davranig temelli (Krill, Squirrel, Goose, Manta ray vb.) yontemlere gecis olmus. 2010 sonrasi Cok Amagli
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OGA (MO-OGA) modelleri 6n plana ¢ikmis. 2024 yili itibariyla DRL (Deep Reinforcement Learning), QIGA gibi
yapay zeka ve kuantum esinli modeller de kullanilmaya baslanmus.

Tablo 2. Literatiirdeki OGA ¢aligmalarinda kullanilan meta-sezgisel algoritmalar.

Amag Fonksiyonu
YIL Ref. Algoritma Amag T?St .
F, F, F; Fu Sistemi
(Bakirtzis,
2002 Biskas, Enhanced genetic algorithm (EGA) X T IEEE 30
Zoumas, & & &
Petridis, 2002)
2006 Particle swarm optimization (PSO) X X T III?EE 30-
(Vlachogiannis . .
2010 & Lee, 2006) Genetic Algorithm (GA) X X X T IEEE 30
2010 Differential evolution (DE) X X T IEEE 30
(Todorovski & . .
2010 Rajicic, 2006) Enhanced Genetic Algorithm (EGA) X X X T IEEE 30
2011 Particle swarm optimization (PSO) X x T/C IlFigE 30-
(Abou El Ela . L IEEE 30-
2011 ve ark., 2010) Particle swarm optimization (PSO) X X x T 118
2011 Biogeography-based optimisation (BBO) x X T IEEE 30
(Kumari &
2011  Maheswarapu, Harmony search (HS) X X X T/C IEEE 30
2010)
Honey Bee Mating Optimisation IEEE 14-
2011 (HBMO) XX T 30018
(Hazra & . .
2012 Sinha, 2011) Genetic Algorithm (GA) X X T IEEE 30
2012 Particle swarm optimization (PSO) x x x x T IlFiléE 30-
(Liang ve ark., . . IEEE 30-
2012 2011) Bacterial foraging (BF) X X T 118
2013 Artificial bee colony (ABC) Xx X x x T IIFI?E 30-
fg]?hattacharya IEEE 6-
2013 Chattopadhyay, Harmony search method (HS) X X T }411;;30-57-
2011)
2014 Artificial bee colony (ABC) X X x T/C IEEE 30
(Sivasubramani Teaching—learning based optimization IEEE 30-
2014 & Swarup, (TLBO) X X T 118
2011)
Teaching—learning based optimization IEEE 30-
2014 (ILBO) x x T 5
(Niknam ve Modified imperialist competitive IEEE 30-
2014 ark.,2011) algorithm-teaching learning X X T 57
algorithm (MICA-TLBO)
. . IEEE 9-
2014 Krill herd algorithm (KHA) X X X T/C 30-57
(Attia, Al-
Turki, & . . . IEEE 30-
2015 Abusorrah, Differential evolution (DE) X X X T/C 118
2012)
2015 Atrtificial bee colony (ABC) x x x x T ?:;EE 30-

65



Ahi Evran Journal of Engineering Sciences (AHIJES) 2025, 1(1), 59-70
Sirakaya' ve ark.

(Niknam, ve . T IEEE 30-
2015 ark., 2012) Biogeography-based optimization (BBO) x X T 57
Teaching—learning based optimization IEEE 30-
2015 (TLBO) X X T 57
(Amjady,
2015 Fateml, & Krill herd algorithm (KHA) X X X T IEEE 57
Zareipour,
2012)
2016 Particle swarm optimization (PSO) X X T IEEE 30
(Khorsandi,
Hosseinian, & . . . IEEE 30-
2016 Ghazanfari, Differential evolution (DE) X X X T/C 57
2013)
2016 Harmony search algorithm (HSA) X T gl:;l—ElEl g 0-
(Sinsuphan,
Leeton, & .
2016 Kulworawanich Grenade explosion method (GEM) x x x x TIC IEEE 30
pong, 2013)
2016 Glowworm Swarm Optimization (GSO)  x x T/C IEEE 30
(Chen, Bo, & . . .
2017 Zhu, 2014) Differential evolution (DE) X x T IEEE 30
2017 Differential evolution (DE) X X X T/C IEEE 57
(Bouchekara,
Abido, & i s IEEE 30-
2017 Boucherma, Artificial bee colony (ABC) X X T 118
2014)
2018 Modified Sine-Cosine algorithm (MSCA) x x X T IlFiI;E 30-
(Shabanpour-
2019 Haghighi, Seifi, Moth Swarm Algorithm (MSA) ve <« x T IEEE 30-
& Niknam, Gravitational Search Algorithm (GSA) 57-118
2014)
IEEE 30,
2019 JAYA X X x T 118-bus
2019 (Ghasemi, ve ~ Novel improved social spider « x x x T IEEE 30-
ark., 2014) optimization algorithm (NISSO) 57-118
Grasshopper optimization algorithm IEEE 30-
2019 (GOA) x x x x TIC 57.118
(Roy & Paul, Artificial bee colony (ABC), Wind Driven IEEE 9-
2019  2015) Optimization (WDO), Gravitational X X X T 30-57
Search Algorithm (GSA)
2020 Particle swarm optimization (PSO) X X x T/C IEEE 30
(El-Fe'rgany & Differential-based harmony search IEEE 57-
2020  Hasanien, algorithm (DH) X X T 118
2015) &
2020 JAYA X X X T EEE 30-
(He, ve ark., Improved Wind-Driven Algorithm
2021  2015) (IWDA) X X T 14-124
GOA Grasshopper Optimization
2021 Algorithm (GOA), X X x T IEEE 30
(Kumar &
2022  Premalatha, Manta ray foraging optimizer (MRF) X x T/C IEEE 30
2015)
Teaching—learning based optimization IEEE 30-
2023 (TLBO) X X X T/C 57
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2023 (Ghasemi, ve

ark., 2015)
Turbulent flow of water-based
2023 optimization) TFWO x x x x TIC IEEE 30

(Mukherjee &  Deep Reinforcement Learning (DRL) ve

Wild Horse Optimizer (WHO) x x x x T IEEE 30

2024  Mukherjee, Quantum Inspired Genetic Algorithm X X X T/C IEEE 30
2015) (DRL-QIGA).
Self-adaptive wild goose algorithm IEEE 30-
2024 (SAWGA) xoxoxox T 118
2024  (Ravi, 2016) Squirrel search algorithm (SSA) X x x T/C IEEE30
2024 Democratic political algorithm (DPA) X x T/C IEEE 30

Fi: Maliyet Optimizasyonu, F2: Giig¢ Kayb1 Optimizasyonu, F1: Gerilim Sapmas1 Optimizasyonu, F1:
Emisyon Optimizasyonu, T: Tekli Ama¢ Fonksiyonu, C: Coklu Ama¢ Fonksiyonu

8. SONUC

Bu derleme ¢alismasinda, elektrik gii¢ sistemlerinde optimal gii¢ akist (OGA) probleminin ¢ézliimiinde meta-
sezgisel yontemlerin kullanimi detayli bir sekilde incelenmigtir. Meta-sezgisel algoritmalar, geleneksel
yontemlerin karsilastigi hesaplama zorluklarini agsmak ve karmasik sistem kosullarinda kiiresel ¢oziime yakin
sonuglar elde etmek i¢in etkili araclar sunmaktadir. Genetik algoritma, parcacik siirlii optimizasyonu, yapay art
kolonisi, Jaya ve TLBO gibi algoritmalarin tek basina veya hibrit yapilarla kullanimi sayesinde hem tek hem ¢ok
amagli OGA problemlerinde bagarili uygulamalar gerceklestirilmistir. Literatiirden elde edilen bulgular, bu
yontemlerin ¢6ziim kalitesi, esneklik ve ¢ok amacglilik konularinda 6nemli avantajlar sundugunu ortaya
koymaktadir. Ancak, parametre bagimliligi, uzun hesaplama siireleri ve gercek zamanl uygulama sinirlamalart
gibi bazi zorluklarin da var oldugu goriilmektedir. Bu baglamda, gelecekte gelistirilecek arastirmalarin
parametresiz algoritmalar, yapay zeka destekli hibrit ¢ozliimler, dagitik ve uyarlanabilir yapilar gibi alanlara
yonelmesi Onerilmektedir. Sonu¢ olarak, meta-sezgisel yontemlerin OGA ¢o6ziimlerinde sundugu yiiksek
potansiyel, bu alanda stirdiiriilebilir, giivenilir ve ekonomik enerji ydnetimi stratejileri gelistirmek isteyen
aragtirmacilar ve mithendisler i¢in gii¢lii bir ara¢ olmaya devam etmektedir.
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