
Ahi Evran Journal of Engineering Sciences (AHIJES)  2025, 1(1), 59-70 

e-ISSN: 3108-5830                                                                                                                                   doi:                                                                      

59 
 

Derleme Makalesi 

 

OPTİMAL GÜÇ AKIŞI PROBLEM ÇÖZÜMLERİNDE META-SEZGİSEL 

YÖNTEMLERİN İNCELENMESİ 

 

INVESTIGATION OF META-HEURISTIC METHODS IN OPTIMAL POWER 

FLOW PROBLEM SOLVING 
Mustafa SIRAKAYA1*  0000-0002-7964-4399,  

Bahtiyar TAŞDEMİR2  0000-0001-7335-5185 

 

 

Makale Bilgileri ÖZET 

Anahtar Kelimeler:  

Optimal güç akışı, meta-

sezgisel algoritmalar, güç 

sistemleri, çok amaçlı 

optimizasyon, yapay zekâ. 

 

Günümüz elektrik enerji sistemlerinin artan karmaşıklığı ve optimum 

işletme ve planlama gereksinimleri, optimal güç akışı (OGA) 

problemlerinin çözümünde daha etkin ve esnek yaklaşımların 

kullanılmasını zorunlu kılmaktadır. Geleneksel deterministik yöntemler, 

özellikle doğrusal olmayan, çok amaçlı ve kısıtlı problemlerde küresel 

optimuma ulaşmada yetersiz kalabilmektedir. Bu bağlamda, son yıllarda 

meta-sezgisel (metaheuristic) algoritmalar, OGA problemlerinin 

çözümünde güçlü alternatifler olarak öne çıkmıştır. Bu çalışmada, elektrik 

güç sistemlerinde OGA problemlerine yönelik olarak geliştirilen başlıca 

meta-sezgisel yöntemler kapsamlı bir şekilde incelenmiştir. Genetik 

algoritma (GA), parçacık sürü optimizasyonu (PSO), yapay arı kolonisi 

(ABC), Öğretme-Öğrenme tabanlı optimizasyon (ÖÖTO), farklı evrim 

(FE), Jaya ve hibrit algoritmalar gibi yaklaşımlar, performans kriterleri, 

avantajları, sınırlılıkları ve uygulama alanları açısından değerlendirilmiştir. 

Ayrıca bu yöntemlerin karşılaştırmalı analizleriyle sağladığı iyileştirme 

düzeyleri de detaylı biçimde ele alınmıştır. Ayrıca, çok amaçlı 

optimizasyon, yenilenebilir enerji entegrasyonu ve belirsizlik altında OGA 

gibi güncel araştırma eğilimlerine de yer verilmiştir. Bu derleme 

araştırması, meta-sezgisel tabanlı çözüm yöntemlerinin güç sistemleri 

alanındaki potansiyelini ortaya koymakta ve gelecekteki çalışmalar için yol 

gösterici olmayı amaçlamaktadır. 
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The increasing complexity of today's electric power systems and the 

requirements for optimal operation and planning necessitate the use of more 

efficient and flexible approaches to solve optimal power flow (OPF) 

problems. Traditional deterministic methods may be insufficient to reach 

the global optimum, especially for nonlinear, multi-objective and 

constrained problems. In this context, in recent years, metaheuristic 
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optimization, artificial 

intelligence. 

 

algorithms have emerged as powerful alternatives for solving OGA 

problems. In this study, the main meta-heuristic methods developed for 

OGA problems in electric power systems are comprehensively reviewed. 

Approaches such as genetic algorithm (GA), particle swarm optimization 

(PSO), artificial bee colony (ABC), Teaching-Learning based optimization 

(TLBA), differential evolution (FE), Jaya and hybrid algorithms are 

evaluated in terms of their performance criteria, advantages, limitations and 

application areas. In addition, the comparative analysis of these methods 

and the level of improvement they provide are also discussed in detail. 

Current research trends such as multi-objective optimization, renewable 

energy integration and OGA under uncertainty are also included. This 

review research demonstrates the potential of meta-heuristic-based solution 

methods in the power systems domain and aims to provide guidance for 

future work. 

 

1. GİRİŞ 

 

Elektrik güç sistemlerinin güvenli, ekonomik ve sürdürülebilir bir şekilde işletilmesi, modern enerji yönetiminin 

temel hedeflerinden biridir (Dommel & Tinney, 1968). Bu hedeflere ulaşabilmek için sistemdeki üretim 

birimlerinin uygun şekilde koordinasyonu, gerilim düzeylerinin sınırlar içinde tutulması ve enerji kayıplarının en 

aza indirilmesi gerekmektedir. Bu bağlamda, Optimal Güç Akışı (OGA) problemi, sistemin belirli kısıtlar altında 

işletme koşullarını optimize etmeyi amaçlayan kritik bir mühendislik problemidir (Sulaiman ve ark., 2021). 

 

OGA problemleri genellikle doğrusal olmayan, çok değişkenli ve çok kısıtlı yapıları nedeniyle çözüm açısından 

oldukça karmaşıktır. Geleneksel çözüm yöntemleri (Newton-Raphson, Lagrange çarpanları, doğrusal 

programlama vb.), bazı özel durumlar dışında yerel çözümlere takılabilmekte veya yüksek boyutlu problemlerde 

yetersiz kalabilmektedir (Abou El Ela, Abido, & Spea, 2010; Gao ve ark.,2017). Ayrıca, bu yöntemlerin türev 

bilgisi gerektirmesi, sistemde belirsizliklerin artması ve yenilenebilir enerji kaynaklarının entegrasyonu gibi 

günümüz güç sistemlerindeki yeni dinamikler karşısında etkinliğini sınırlamaktadır (Zamzam & Baker, 2020). 

 

Bu sorunların aşılması amacıyla son yıllarda meta-sezgisel algoritmalar, OGA çözümlerinde yaygın olarak 

kullanılmaya başlanmıştır. Meta-sezgisel yöntemler; rastgelelik, popülasyon temelli arama ve doğadaki çeşitli 

mekanizmalardan esinlenen yapılarına dayanarak, karmaşık optimizasyon problemlerinde küresel çözüme yakın 

sonuçlar elde etme potansiyeline sahiptir (Devarapalli, Bhattacharyya, & Sinha, 2020). Genetik algoritma (GA), 

parçacık sürü optimizasyonu (PSO), yapay arı kolonisi (ABC), farklı evrim (DE), Jaya, öğretmen-öğrenci temelli 

algoritmalar (TLBO) ve çeşitli hibrit yaklaşımlar, literatürde sıklıkla OGA çözümünde uygulanmış ve başarılı 

sonuçlar vermiştir. 

 

Bu derleme çalışmasının amacı, OGA problemlerinde kullanılan başlıca meta-sezgisel yöntemleri sistematik bir 

şekilde incelemek, yöntemlerin güçlü ve zayıf yönlerini değerlendirmek ve gelecekteki araştırmalara ışık tutacak 

kapsamlı bir bakış açısı sunmaktır. Çalışma kapsamında hem tek amaçlı hem de çok amaçlı OGA problemleri ele 

alınmış, ayrıca yenilenebilir enerji entegrasyonu, belirsizlik modellemeleri ve dinamik yük değişimleri gibi güncel 

uygulama alanlarına da değinilmiştir. 

 

2. OGA PROBLEMİ FORMÜLASYONU 

 

Optimal Güç Akışı (OGA) problemi, elektrik enerji sistemlerinin güvenli, ekonomik ve verimli şekilde 

işletilmesini amaçlayan önemli bir optimizasyon problemidir (Cain, O’neill, & Castillo, 2012). OGA, sistemin 

fiziksel ve operasyonel kısıtlarını dikkate alarak belirli bir amaç fonksiyonunu (örneğin üretim maliyeti, güç kaybı 

veya emisyon miktarı) optimize etmeyi hedefler. Bu bağlamda OGA problemi, hem sürekli hem de ayrık karar 

değişkenleri içeren doğrusal olmayan kısıtlı bir optimizasyon problemi olarak formüle edilir (Niu, Wan, & Xu, 

2014). 

 

2.1.Amaç Fonksiyonu 

 

OGA probleminin temel amacı, aşağıda örneklenen kriterlerden biri veya birkaçının optimize edilmesidir: 

• Toplam üretim maliyetinin minimizasyonu 

• Aktif güç kayıplarının minimizasyonu 
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• Çevresel emisyonların minimizasyonu 

• Gerilim profilinin iyileştirilmesi 

Genel bir amaç fonksiyonu aşağıdaki gibi ifade edilebilir: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∶ 𝑓(𝑥, 𝑢)          (1) 

 

Burada, f(x,u), seçilen optimizasyon hedefini temsil eden amaç fonksiyonu, x, durum değişkenleri (örneğin gerilim 

büyüklükleri ve açıları, reaktif güçler), u, kontrol değişkenleri (örneğin jeneratör çıkışları, gerilim seviyeleri, 

transformatör kademe oranları) 

 

2.1.1 Durum değişkenleri 

Güç sisteminde belirli sınırlar altında mevcut durumu hakkında bilgi vermek için optimize edilen değerlerdir. 

Durum değişkeni x olarak tanımlanmış ve Eş. 2 ile belirtilmiştir. 

 

𝑥 = [𝑃𝐺1
,  𝑉𝐿1

… 𝑉𝐿𝑁𝐿
,  𝑄𝐺1

… 𝑄𝐺𝑁𝐺
,  𝑆𝑙1

… 𝑆𝑙𝑛𝑙
]        (2) 

 

Burada, P_G1 seçilen slack bara, Q_G generatörlerin reaktif güç değeri, V_L yük baralarının gerilim değeri, and 

S_l iletim hattının yükü olarak tanımlanmıştır. 

 

2.1.2. Kontrol değişkenleri 

 

Güç sisteminde amaç fonksiyonuna uygun olarak optimize edilmesi için değişkenlere sahip karar değerleridir. 

Durum değişkeni u olarak tanımlanmış ve Eş. 3 ile belirtilmiştir. 

 

𝑢𝑇 = [𝑃𝐺2
… 𝑃𝐺𝑁𝐺

,  𝑉𝐺1
… 𝑉𝐺𝑁𝐺

,  𝑄𝐶1 … 𝑄𝐶𝑁𝐶
,  𝑇1 … 𝑇𝑁𝑇]       (3) 

 

Burada, taransformatör tap ayarları T, paralel reaktif güç kompanzatörleri Q_C olarak tanımlanmıştır. 

 

2.1.3 Kısıtlamalar  

 

OGA çalışmalarında, güç sisteminin güvenli ve verimli çalışması için bazı kısıtlamaların belirlenmesi 

gerekmektedir. bu kısıtlamaları eşitlik ve eşitsizlik kısıtlamaları olarak sınıflandırılmaktadır. Kısıtlamalar sistemin 

çalışma sınırlarını belirler.  

 

Eşitlik kısıtlamaları: burada amaç sistemdeki güç üretimi, tüketimi ve kayıplar arasında oluşturulan dengeyi 

belirleyen kısıtlamalardır. Güç sistemlerinde aktif ve reaktif güç kısıtlamaları Eş. 4ve 5’de verilmiştir. 

 

𝑃𝐺𝑖 − 𝑃𝐷𝑖 − 𝑉𝑖 ∑ 𝑉𝑗[𝐺𝑖𝑗cos (𝑁𝐵
𝑗=1 𝛿𝑖 − 𝛿𝑖) + 𝐵𝑖𝑗𝑠𝑖𝑛(𝛿𝑖 − 𝛿𝑖)] = 0,                                                  

 (4) 

𝑄𝐺𝑖 − 𝑄𝐷𝑖 − 𝑉𝑖 ∑ 𝑉𝑗[𝐺𝑖𝑗sin (𝑁𝐵
𝑗=1 𝛿𝑖 − 𝛿𝑖) + 𝐵𝑖𝑗𝑐𝑜𝑠(𝛿𝑖 − 𝛿𝑖)] = 0                                               (5) 

Burada, 𝑃𝐺𝑖 ,  𝑖. baradaki jeneratörlerin ürettiği aktif güç. 𝑃𝐷𝑖, 𝑖. baradaki aktif güç talebi. 𝑄𝐺𝑖 , 𝑖. baradaki 

jeneratörlerin ürettiği reaktif güç. 𝑄𝐷𝑖 , 𝑖. baradaki reaktif güç talebidir. 𝐺𝑖𝑗 ve 𝐵𝑖𝑗  𝑖. ve 𝑗. baralar arasındaki iletim 

hattının iletkenlik ve susceptance değerleridir.  

Eşitsizlik kısıtlamaları: burada generatörlerin, baraların, trafoların güç gerilim gibi değerlerinin belirli sınırlar 

içinde kalması belirlenir.  

𝑃𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖

𝑚𝑎𝑥   ,   1 ≤ 𝑖 ≤ 𝑁𝐺                                                                                              (6) 

𝑄𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖

𝑚𝑎𝑥   ,   1 ≤ 𝑖 ≤ 𝑁𝐺                                                                                                    (7) 

𝑉𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐺𝑖 ≤ 𝑉𝐺𝑖

𝑚𝑎𝑥   ,   1 ≤ 𝑖 ≤ 𝑁𝐺                                                                                                        (8) 

𝑄𝐶𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐶𝑖 ≤ 𝑄𝐶𝑖

𝑚𝑎𝑥   ,   1 ≤ 𝑖 ≤ 𝑁𝐶                                                                                                   (9) 

𝑇𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑖

𝑚𝑎𝑥   ,   1 ≤ 𝑖 ≤ 𝑁𝑇                                                                                                       (10) 

𝑉𝐿𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐿𝑖 ≤ 𝑉𝐿𝑖

𝑚𝑎𝑥   ,   1 ≤ 𝑖 ≤ 𝑁𝐿                                                                                                (11) 

𝑆𝑙𝑖 ≤ 𝑆𝑙𝑖
𝑚𝑎𝑥  ,   1 ≤ 𝑖 ≤ 𝑁𝑙                                                                                    (12) 

 

 

 

 

 

3. KLASİK OGA ÇÖZÜM YÖNTEMLERİ 
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Optimal Güç Akışı (OGA) problemi, karmaşık, doğrusal olmayan ve kısıtlı bir optimizasyon problemidir. Bu 

problemin çözümü için uzun yıllardır geliştirilen klasik (deterministik) çözüm yöntemleri, özellikle sistemin 

kararlılığını ve güvenilirliğini sağlamak amacıyla yaygın olarak kullanılmaktadır. Klasik yöntemler, genellikle 

türev bilgisi gerektiren matematiksel tekniklere dayalı olup, hızlı yakınsama özelliklerine sahiptir. Ancak, yerel 

optimuma saplanma eğilimleri ve çok amaçlı hedeflere sınırlı uyumlulukları nedeniyle bazı kısıtlamaları da 

beraberinde getirirler. 

 

 

Klasik OGA çözüm yöntemleri genel olarak aşağıdaki başlıklar altında sınıflandırılabilir: 

 

3.1. Newton-Raphson Tabanlı Yöntemler 

 

Newton-Raphson (NR) yöntemi, güç sistemleri analizinde sıklıkla kullanılan hızlı yakınsayan bir nümerik 

yöntemdir. OGA’ye uyarlanmış haliyle bu yöntem, Lagrange çarpanları ile amaç fonksiyonunu ve kısıtları 

birleştirerek çözüm üretir üretir (Sun ve ark., 1984). Denklem sistemi şu şekilde oluşturulur: 

 

𝐿(𝑥, 𝜆) = 𝑓(𝑥) + 𝜆𝑇𝑔(𝑥)          (13) 

 

Burada 𝑓(𝑥) amaç fonksiyonunu,  𝑔(𝑥) ise güç akış denkliklerini temsil eder. NR tabanlı yöntemlerde doğrusal 

olmayan denklem sistemi Jacobian matrisi yardımıyla çözülür. Bu yöntem özellikle küçük ve orta ölçekli 

sistemlerde yüksek doğruluk sağlar, ancak başlangıç noktasına duyarlıdır. 

 

3.2. Doğrusal Programlama (LP) 

 

Doğrusal programlama, hem amaç fonksiyonunun hem de kısıtların doğrusal olduğu problemlerde kullanılır. OGA 

problemleri genellikle doğrusal olmadığından, LP ancak bazı varsayımlar altında (örneğin sabit gerilim 

büyüklükleri, doğrusal kayıplar) yaklaşık çözümler sunabilir (Stott & Marinho, 1979). Hızlı ve kararlı çalışmasına 

rağmen, gerçekçi OGA problemleri için sınırlı bir uygulama alanına sahiptir (Capitanescu, 2016). 

 

3.3. Doğrusal Olmayan Programlama (NLP) 

 

Doğrusal olmayan programlama, hem amaç fonksiyonunun hem de kısıtların doğrusal olmayan fonksiyonlarla 

ifade edildiği durumları kapsar (Frank, Steponavice, & Rebennack, 2012). Lagrange çarpanları veya Karush-

Kuhn-Tucker (KKT) koşulları kullanılarak çözüm elde edilir. NLP yöntemleri, problem boyutuna göre etkili 

sonuçlar üretebilir ancak çözüm süresi uzayabilir ve yerel minimuma saplanma riski vardır (Wei, ve ark. 1998). 

 

3.4. Artırılmış Lagrange Yöntemi (Augmented Lagrangian Method) 

 

Bu yöntem, klasik Lagrange yaklaşımının bir uzantısı olup, ceza terimleriyle güç akış denkliklerini daha etkili 

şekilde uygular. Amaç fonksiyonuna eklenen ceza terimleri sayesinde kısıtların ihlal edilmesi engellenir: 

 

𝐿𝑎(𝑥, 𝜆, 𝜌) = 𝑓(𝑥) + 𝜆𝑇(𝑥) +
𝜌

2
‖𝑔(𝑥)‖2        (14) 

 

Burada 𝜌, ceza katsayısıdır. Bu yöntem, kısıtların daha hassas kontrolünü sağlar. 

 

3.5. İç Nokta Yöntemleri (Interior Point Methods) 

 

İç nokta yöntemleri, büyük ölçekli optimizasyon problemlerinde etkili performans sergileyen modern klasik 

yöntemlerdendir (Yan & Quintana, 1999). Kısıtlı optimizasyon problemlerinde bariyer fonksiyonları kullanarak 

çözüm uzayında iç noktalardan ilerlenmesini sağlar. Özellikle yüksek boyutlu OGA problemlerinde tercih 

edilmektedir (Momoh & Zhu, 1999). 

 

İç nokta yöntemiyle amaç fonksiyonu genellikle şu şekilde formüle edilir: 

 

𝑀𝑖𝑛 𝑓(𝑥) = 𝜇 ∑ ln (𝑠𝑖)𝑖           (15) 

 

Burada 𝜇, bariyer parametresi; 𝑠𝑖, eşitsizlik kısıtlarına ilişkin boşluk değişkenleridir. Hem çözüm hassasiyeti hem 

de algoritmik verimlilik açısından ileri düzey avantajlar sunar. 
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3.6. Kuadratik Programlama (QP) 

 

Amaç fonksiyonunun kuadratik, kısıtların ise doğrusal olduğu durumlarda kuadratik programlama kullanılabilir. 

Özellikle ikinci dereceden üretim maliyet fonksiyonlarının optimize edilmesinde etkilidir. Ancak, güç akış 

denkliklerinin doğrusal hale getirilmesi gerektiğinden, çözüm hassasiyeti bazı durumlarda azalabilir (Reid & 

Hasdorff, 2007). 

 

Tablo 1. Klasik Yöntemlerin Avantaj ve Dezavantajları 

Özellik Avantaj Dezavantaj 

Newton-Raphson Hızlı yakınsama Başlangıç noktasına duyarlılık 

LP Hızlı ve kararlı Gerçekçilikten uzaklaşabilir 

NLP Doğrusal olmayan sistemlerde etkili Yerel minimuma saplanabilir 

İç Nokta Büyük sistemlerde güçlü performans Karmaşık algoritma yapısı 

QP Maliyet fonksiyonlarında uygundur Kısıt doğrusal varsayımı gerekir 

 

Sonuç olarak, klasik çözüm yöntemleri, OGA probleminin deterministik yapısını temel alarak yüksek çözüm 

doğruluğu ve hızlı hesaplama avantajları sunmaktadır. Ancak, bu yöntemlerin karmaşık, çok amaçlı ve çok modlu 

yapıya sahip modern enerji sistemlerinde bazı sınırlamaları bulunmaktadır. Tablo 1’de klasik yöntemlerin avantaj 

ve dezavantajları tablo halinde gösterilmiştir. Bu nedenle son yıllarda klasik yöntemler, evrimsel algoritmalar ve 

yapay zeka tabanlı yaklaşımlarla tamamlanarak daha esnek OGA çözümleri elde edilmektedir. 

4. META-SEZGİSEL YÖNTEMLERİN SINIFLANDIRILMASI 

 

Meta-sezgisel algoritmalar, genel olarak doğadan ilham alan ve deterministik olmayan arama mekanizmaları 

kullanan sezgisel yaklaşımlar olarak tanımlanabilir. OGA problemi bağlamında kullanılan başlıca meta-sezgisel 

yöntemler aşağıdaki başlıklar altında sınıflandırılabilir: 

 

4.1 Evrimsel Algoritmalar 

 

• Genetik Algoritma (GA): Evrim teorisine dayalı, kromozom temelli arama yöntemidir. Çaprazlama 

ve mutasyon operatörleri ile çözüm uzayında dolaşır. 

• Farklı Evrim (DE): Vektör tabanlı mutasyon ve yeniden kombinasyon süreçleri ile çözümleri 

geliştirir. Sürekli değerli problemler için uygundur. 

 

4.2 Sürü Zekâsı Tabanlı Yöntemler 

 

• Parçacık Sürü Optimizasyonu (PSO): Kuş ve balık sürülerinin hareketinden ilham alan, çözüm 

adaylarını hız ve konum vektörleri ile güncelleyen bir yöntemdir. 

• Yapay Arı Kolonisi (ABC): Arıların nektar arama davranışına dayanır. Çalışan, gözlemci ve keşifçi 

arı fazları ile çözüm geliştirilir. 

 

4.3 Fiziksel ve Sosyal Davranış Tabanlı Yöntemler 

 

• Çekimsel Arama Algoritması (GSA): Kütle çekimi yasasına dayanarak ajanlar arası etkileşimle 

çözüm aranır. 

• Jaya Algoritması: En iyi çözüme yaklaşma ve en kötü çözümden uzaklaşma prensibine dayalı sade 

bir algoritmadır. 

• Öğretme-Öğrenme Temelli Optimizasyon (TLBO): Bir öğretmen ve öğrenciler arasında bilgi 

transferi modeliyle çalışır. Parametre ayarı gerektirmemesi avantaj sağlar. 

 

4.4 Hibrit ve Uyarlanabilir Yöntemler 

 

• GA-PSO, DE-ABC, TLBO-Jaya gibi hibrit yöntemler, birden fazla algoritmanın güçlü yönlerini 

birleştirerek daha dengeli bir arama süreci sunmayı hedefler. 

• Uyarlanabilir algoritmalar ise parametrelerini probleme göre otomatik olarak ayarlayarak esneklik 

kazandırır. 
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5. ÇOK AMAÇLI OPTİMİZASYON VE PARETO YAKLAŞIMI 

 

Güç sistemlerinde optimal güç akışı (OGA) problemleri genellikle tek bir hedefle sınırlı değildir. Minimum üretim 

maliyeti, minimum güç kaybı, voltaj kararlılığı, çevresel emisyonlar ve güvenilirlik gibi birçok kriter aynı anda 

optimize edilmek istenir. Bu nedenle çok amaçlı optimizasyon (Multi-Objective Optimization - MOO) 

yaklaşımları, OGA problemlerinin çözümünde daha gerçekçi ve etkili bir alternatif sunar. 

 

Meta-sezgisel algoritmaların çok amaçlı versiyonları, Pareto optimalite prensibini esas alarak birden fazla hedef 

fonksiyon arasında denge kurmayı amaçlar. Bir çözümün Pareto optimal olması, başka bir çözümün tüm hedeflerde 

daha iyi olamayacağı anlamına gelir. Bu yaklaşımla elde edilen Pareto ön cepheleri (Pareto fronts), karar vericilere 

farklı tercihleri değerlendirme olanağı sağlar. 

 

Literatürde en çok kullanılan çok amaçlı meta-sezgisel yöntemler arasında NSGA-II (Non-dominated Sorting 

Genetic Algorithm II), MOPSO (Multi-Objective Particle Swarm Optimization), MOABC, MODE, MOJaya ve 

MO-TLBO yer almaktadır. Bu yöntemler ile yakıt maliyeti vs. kayıplar, emisyon vs. gerilim sapması gibi farklı 

hedef çiftleri dengeli şekilde optimize edilmiştir. Pareto tabanlı analizler, sistem planlamacıları için çok kıymetli 

karar destek araçları sunmaktadır. 

 

6. META-SEZGİSEL YÖNTEMLERİN GÜÇ SİSTEMLERİNE UYGULANMASINDAKİ 

ZORLUKLAR 

 

Meta-sezgisel yöntemlerin OGA çözümlerinde sunduğu avantajlara rağmen, uygulamada çeşitli zorluklar da 

mevcuttur: 

• Küresel optimum garantisi yoktur: Meta-sezgisel yöntemler, küresel optimuma yakın çözümler 

üretebilse de, çözümün gerçekten küresel optimum olup olmadığı garanti edilemez. 

• Parametre hassasiyeti: Birçok algoritma, uygun parametre ayarı yapılmadığında düşük performans 

gösterebilir. Bu durum kullanıcı deneyimine bağlıdır. 

• Yavaş yakınsama ve hesap yükü: Özellikle büyük ölçekli sistemlerde, çözümün hesaplama süresi 

artabilir. Yüksek işlem gücü gereksinimi söz konusu olabilir. 

• Kısıtların ele alınması: Karmaşık kısıt setlerinin (voltaj, reaktif güç, hat kapasiteleri vb.) 

algoritmalara entegrasyonu bazen zordur. 

• Gerçek zamanlı uygulama kısıtları: Meta-sezgisel algoritmaların doğası gereği iteratif yapıları, 

bazı gerçek zamanlı uygulamalarda kullanımını sınırlayabilir. 

 

7. GELECEK ÇALIŞMALAR İÇİN ÖNERİLER 

 

Meta-sezgisel yöntemlerin güç sistemlerinde daha etkin kullanılabilmesi ve mevcut sınırlamaların aşılması için 

aşağıdaki öneriler dikkate alınabilir: 

 

• Uyarlanabilir ve parametresiz algoritmalar: Kullanıcı müdahalesini azaltan, algoritma içi öğrenmeye 

dayalı yapılar geliştirilebilir (örneğin Jaya, TLBO gibi). 

• Hibrit yaklaşımlar: Birden fazla algoritmanın güçlü yönlerini birleştiren yapılarla çözüm kalitesi ve 

yakınsama süresi iyileştirilebilir. 

• Veri temelli yöntemlerle bütünleşme: Yapay sinir ağları, derin öğrenme ve makine öğrenmesi 

teknikleriyle algoritmalar desteklenerek daha akıllı optimizasyon yapıları geliştirilebilir. 

• Gerçek zamanlı ve dağıtık çözümler: Özellikle mikro şebekeler ve akıllı şebekelerde kullanılabilecek, 

dağıtık ve hızlı çalışan versiyonlar tasarlanabilir. 

• Enerji dönüşüm teknolojileri ile entegrasyon: Yenilenebilir enerji, enerji depolama, elektrikli araçlar 

gibi yeni sistem unsurlarının dahil edildiği OGA modelleriyle çalışmalar genişletilmelidir. 

• Benchmark test sistemleriyle karşılaştırmalı analiz: IEEE 14, 30, 57, 118 gibi yaygın test 

sistemlerinde standartlaştırılmış karşılaştırmalar yapılması önerilir. 

 

Tablo 2’de yıllar içinde OGA problemlerinin çözümünde kullanılan meta-sezgisel algoritmalar seçilen test 

sistemlerine göre incelenmiş, amaç fonksiyonları, tekli veya çoklu amaç fonksiyonlarına göre sıralanmıştır. 

İncelenen çalışmalarda test sistemi olarak IEEE 30 baralı test sistemi yaygın olarak kullanılmıştır. Hemen hemen 

tüm çalışmalarda maliyet amaç fonksiyonu optimize edilmiştir. Klasik GA, PSO gibi yöntemlerden biyolojik ve 

sosyal davranış temelli (Krill, Squirrel, Goose, Manta ray vb.) yöntemlere geçiş olmuş. 2010 sonrası Çok Amaçlı 
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OGA (MO-OGA) modelleri ön plana çıkmış. 2024 yılı itibarıyla DRL (Deep Reinforcement Learning), QIGA gibi 

yapay zekâ ve kuantum esinli modeller de kullanılmaya başlanmış. 

 

 

Tablo 2. Literatürdeki OGA çalışmalarında kullanılan meta-sezgisel algoritmalar. 

YIL Ref. Algoritma 
Amaç Fonksiyonu 

Amaç 
Test 

Sistemi F1 F2 F3 F4 

2002 

(Bakirtzis, 

Biskas, 

Zoumas, & 

Petridis, 2002) 

Enhanced genetic algorithm (EGA) x    T IEEE 30 

2006 

 

Particle swarm optimization (PSO)  x x  T 
IEEE 30-

118 

2010 
(Vlachogiannis 

& Lee, 2006) 
Genetic Algorithm (GA) x x x  T IEEE 30 

2010 
 

Differential evolution (DE) x  x  T IEEE 30 

2010 
(Todorovski & 

Rajicic, 2006) 
Enhanced Genetic Algorithm (EGA) x x x  T IEEE 30 

2011 

 

Particle swarm optimization (PSO) x   x T/Ç 
IEEE 30-

118 

2011 
(Abou El Ela 

ve ark., 2010) 
Particle swarm optimization (PSO) x x  x T 

IEEE 30-

118 

2011 
 

Biogeography-based optimisation (BBO) x  x  T IEEE 30 

2011 

(Kumari & 

Maheswarapu, 

2010) 

Harmony search (HS) x x x  T/Ç IEEE 30 

2011 

 
Honey Bee Mating Optimisation 

(HBMO) 
x x  x T 

IEEE 14-

30-118 

2012 
(Hazra & 

Sinha, 2011) 
Genetic Algorithm (GA) x  x  T IEEE 30 

2012 

 

Particle swarm optimization (PSO) x x x x T 
IEEE 30-

118 

2012 
(Liang ve ark., 

2011) 
Bacterial foraging (BF)  x  x  T 

IEEE 30-

118 

2013 

 

Artificial bee colony (ABC) x x x x T 
IEEE 30-

118 

2013 

(Bhattacharya 

& 

Chattopadhyay, 

2011) 

Harmony search method (HS) x  x  T 

IEEE 6-

14-30-57-

118 

2014 
 

Artificial bee colony (ABC) x x  x T/Ç IEEE 30 

2014 

(Sivasubramani 

& Swarup, 

2011) 

Teaching–learning based optimization 

(TLBO) 
x  x  T 

IEEE 30-

118 

2014 

 
Teaching–learning based optimization 

(TLBO) 
x   x T 

IEEE 30-

57 

2014 

(Niknam ve 

ark.,2011) 

Modified imperialist competitive 

algorithm-teaching learning 

algorithm (MICA-TLBO) 

x  x  T 
IEEE 30-

57 

2014 

 

Krill herd algorithm (KHA) x x x  T/Ç 
IEEE 9-

30-57 

2015 

(Attia, Al-

Turki, & 

Abusorrah, 

2012) 

Differential evolution (DE) x x x  T/Ç 
IEEE 30-

118 

2015 

 

Artificial bee colony (ABC) x x x x T 
IEEE 30-

57 
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2015 
(Niknam, ve 

ark., 2012) 
Biogeography-based optimization (BBO) x  x  T 

IEEE 30-

57 

2015 

 
Teaching–learning based optimization 

(TLBO) 
x  x  T 

IEEE 30-

57 

2015 

(Amjady, 

Fatemi, & 

Zareipour, 

2012) 

Krill herd algorithm (KHA) x x x  T IEEE 57 

2016 
 

Particle swarm optimization (PSO) x x   T IEEE 30 

2016 

(Khorsandi, 

Hosseinian, & 

Ghazanfari, 

2013) 

Differential evolution (DE) x x x  T/Ç 
IEEE 30-

57 

2016 

 

Harmony search algorithm (HSA) x    T 
IEEE 30-

57-118 

2016 

(Sinsuphan, 

Leeton, & 

Kulworawanich

pong, 2013) 

Grenade explosion method (GEM) x x x x T/Ç IEEE 30 

2016 
 

Glowworm Swarm Optimization (GSO) x   x T/Ç IEEE 30 

2017 
(Chen, Bo, & 

Zhu, 2014) 
Differential evolution (DE) x   x T IEEE 30 

2017 
 

Differential evolution (DE) x x x  T/Ç IEEE 57 

2017 

(Bouchekara, 

Abido, & 

Boucherma, 

2014) 

Artificial bee colony (ABC) x x   T 
IEEE 30-

118 

2018 

 

Modified Sine-Cosine algorithm (MSCA) x x x  T 
IEEE 30-

118 

2019 

(Shabanpour-

Haghighi, Seifi, 

& Niknam, 

2014) 

Moth Swarm Algorithm (MSA)  ve 

Gravitational Search Algorithm (GSA)  
x x   T 

IEEE 30-

57-118 

2019 

 

JAYA x x  x T  
IEEE 30, 

118-bus 

2019 
(Ghasemi, ve 

ark., 2014) 

Novel improved social spider 

optimization algorithm (NISSO) 
x x x x T 

IEEE 30-

57-118 

2019 

 
Grasshopper optimization algorithm 

(GOA) 
x x x x T/Ç 

IEEE 30-

57-118 

2019 

(Roy & Paul, 

2015) 

Artificial bee colony (ABC), Wind Driven 

Optimization (WDO), Gravitational 

Search Algorithm (GSA) 

x x x  T 
IEEE 9-

30-57 

2020 
 

Particle swarm optimization (PSO) x x  x T/Ç IEEE 30 

2020 

(El-Fergany & 

Hasanien, 

2015) 

Differential-based harmony search 

algorithm (DH) 
x  x  T 

IEEE 57-

118 

2020 

 

JAYA x x x  T 
IEEE 30-

118 

2021 

(He, ve ark., 

2015) 
Improved Wind-Driven Algorithm 

(IWDA) x x   T  14-124 

2021 

 
GOA Grasshopper Optimization 

Algorithm (GOA), 
x x  x T IEEE 30 

2022 

(Kumar & 

Premalatha, 

2015) 

Manta ray foraging optimizer (MRF) x   x T/Ç IEEE 30 

2023 

 
Teaching–learning based optimization 

(TLBO) 
x x x  T/Ç 

IEEE 30-

57 

https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s12667-016-0206-8&casa_token=3fx4Tx6Eb3oAAAAA:EWiQE-habnWn-sWKgkhlRlVfBNpzVIeRL-ELicNZm8qzTrNLV7Mp99B-2hLXH3MgIplvYslih0S4ROdKHA
https://www.sciencedirect.com/science/article/pii/S1568494621011212?casa_token=ouqI0Ira2jYAAAAA:rQqIMEtKKkEH8ieYFTAbWase9OQF7QNXMXxjpIRW5TV4JyGucZvpDCJLjW6RCv5BuvBRTal6KLI
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2023 
(Ghasemi, ve 

ark., 2015) 
Wild Horse Optimizer (WHO) x x x x T IEEE 30 

2023 

 
Turbulent flow of water-based 

optimization) TFWO 
x x x x T/Ç IEEE 30 

2024 

(Mukherjee & 

Mukherjee, 

2015) 

Deep Reinforcement Learning (DRL) ve 

Quantum Inspired Genetic Algorithm 

(DRL-QIGA). 

x x x  T/Ç IEEE 30 

2024 

 
Self-adaptive wild goose algorithm 

(SAWGA) 
x x x x T  

IEEE 30-

118 

2024 (Ravi, 2016) Squirrel search algorithm (SSA) x  x x T/Ç IEEE 30 

2024 
 

Democratic political algorithm (DPA) x     x T/Ç IEEE 30 

 

F1: Maliyet Optimizasyonu, F2: Güç Kaybı Optimizasyonu, F1: Gerilim Sapması Optimizasyonu, F1: 

Emisyon Optimizasyonu, T: Tekli Amaç Fonksiyonu, Ç: Çoklu Amaç Fonksiyonu 

 

8. SONUÇ 

 

Bu derleme çalışmasında, elektrik güç sistemlerinde optimal güç akışı (OGA) probleminin çözümünde meta-

sezgisel yöntemlerin kullanımı detaylı bir şekilde incelenmiştir. Meta-sezgisel algoritmalar, geleneksel 

yöntemlerin karşılaştığı hesaplama zorluklarını aşmak ve karmaşık sistem koşullarında küresel çözüme yakın 

sonuçlar elde etmek için etkili araçlar sunmaktadır. Genetik algoritma, parçacık sürü optimizasyonu, yapay arı 

kolonisi, Jaya ve TLBO gibi algoritmaların tek başına veya hibrit yapılarla kullanımı sayesinde hem tek hem çok 

amaçlı OGA problemlerinde başarılı uygulamalar gerçekleştirilmiştir. Literatürden elde edilen bulgular, bu 

yöntemlerin çözüm kalitesi, esneklik ve çok amaçlılık konularında önemli avantajlar sunduğunu ortaya 

koymaktadır. Ancak, parametre bağımlılığı, uzun hesaplama süreleri ve gerçek zamanlı uygulama sınırlamaları 

gibi bazı zorlukların da var olduğu görülmektedir. Bu bağlamda, gelecekte geliştirilecek araştırmaların 

parametresiz algoritmalar, yapay zekâ destekli hibrit çözümler, dağıtık ve uyarlanabilir yapılar gibi alanlara 

yönelmesi önerilmektedir. Sonuç olarak, meta-sezgisel yöntemlerin OGA çözümlerinde sunduğu yüksek 

potansiyel, bu alanda sürdürülebilir, güvenilir ve ekonomik enerji yönetimi stratejileri geliştirmek isteyen 

araştırmacılar ve mühendisler için güçlü bir araç olmaya devam etmektedir. 
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